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Boundary Terms for Globally Supersymmetric 
Actions 
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Supersymmetry is always broken on a manifold-with-boundary, since the 
supersymmetric variation of the Lagrangian is a total divergence which yields a 
boundary term when integrated. If attention is restricted to a subalgebra of 
generators which preserve the boundary, the invariance of the action can be 
restored by adding a boundary correction whose variation cancels that from the 
integrated Lagrangian. One can also impose boundary conditions which are 
invariant under this subalgebra. 

1. I N T R O D U C T I O N  

Supersymmetry occurs in a wide range of contexts, from field theory 
and string theory to stochastic processes. In many of these contexts, one wishes 
to calculate amplitudes between specified initial and final configurations. In 
the path-integral approach, the first step in this procedure is to define an 
action functional which depends on the configuration of the fields between 
these boundaries. 

The action is usually expressed as the integral of  a Lagrangian density, 
whose variation under supersymmetry transformations is a total divergence. 
When integrated, however, this variation gives rise to a boundary term which 
breaks the supersymmetry of the functional integral. 

In some applications, the breaking of supersymmetry by boundaries 
is unimportant. Nonetheless, supersymmetric models often have useful or 
interesting properties, and it is natural to wonder whether the action can be 
modified in such a way that at least some of the supersymmetry is preserved. 

If  a symmetry is to be unbroken by the presence of boundaries, then all 
of its bosonic generators must themselves be symmetries of  the boundary; 
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hence, its algebra must not generate translations normal to the boundary. 
However, the full supersymmetry algebra contains all possible translations, 
including those normal to the boundary. One must therefore be content in 
this case to seek a subalgebra which excludes the generators of normal 
translations. The properties of this subalgebra are discussed in Section 2. 

Assuming the existence of a boundary-preserving subalgebra, it is natural 
to look for some way to restore the invariance of the action under the reduced 
supersymmetry generated by this subalgebra. As shown in Section 2, this 
can be done by adding a total divergence to the super-Lagrangian. 

One can also impose boundary conditions which transform in a well- 
defined manner under the boundary-preserving subalgebra, or which are 
invariant under this subalgebra. These possibilities are discussed in Section 3. 

In this paper I consider only global (i.e., rigid) supersymmetry. The 
same methods can undoubtedly be generalized to the case of local supersym- 
metry, but the full analysis appears rather more complicated and has not yet 
been attempted. Although the following discussion refers only to simple 
supersymmetry, it generalizes trivially to extended supersymmetries with 
central charges. 

2. AN INVARIANT ACTION 

Suppose that the space At has coordinates x ~ (Ix = 1 . . . . .  n) and a 
boundary OAt with an outward-pointing unit normal 1-form N~ dx ~'. We make 
no assumptions here about whether this l-form is timelike or spacelike, 
although in many applications the boundary will represent an initial or 
final hypersurface. 

Suppose that our model admits a global supersymmetry with fermionic 
generators Qo (a = 1 . . . . .  D) obeying the algebra 

{Q,,, Qb} = 2(C~f),,bO~,, [Qa, 0~] = 0 (1) 

where ~/~ are suitable gamma matrices and C represents the charge conjugation 
matrix. In superspace parametrized by commuting coordinates x r and anti- 
commuting coordinates tP (a = 1 . . . . .  D) these generators can be repre- 
sented as 

t~ -{- ( C,~P,)abOb t~p " (2) 
Q,, = O0---- ~ 

Let us assume that there is a subalgebra of (1) which has b independent 
fermionic coordinates (/9 < D) and ~ independent bosonic generators (r~ < 
n); without loss of generality, we can take these to be {Qn: d = 1 . . . . .  /5} 
and {0r ~ = 1 . . . . .  r~}, respectively. In order for the subalgebra to preserve 
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the boundary OAt, it is necessary that all of its bosonic generators 0~ are 
symmetries of OAt. Consequently, they must all be tangential to O.kt and 
perpendicular to the normal 1-form N~ dx~'; hence Nr = 0. 

In our notation, Latin indices with carets will always run from 1 to 15, 
and Greek indices with carets from 1 to ~. Similarly, barred Latin indices 
will run from/5 + 1 to D, and barred Greek indices will run from r~ + 1 to n. 

To ensure that the subalgebra closes, we require that any anticommutator 
{Qa, Qb} of fermionic generators is spanned by the bosonic generators O~. 
There must be no contribution from the bosonic generators 0~ outside the 
subalgebra, 

(Cv~')af, = 0 (3) 

and so one obtains the identities 

{Q a, Qb} = 2(C~/g)~ar [Qa, a0~] = 0 (4) 

We now seek an action which is invariant under the subalgebra (4). The 
problem is that the generators Qa still contain derivatives normal to the 
boundary; consequently the supersymmetric variation of  any super-Lagran- 
gian will be a total divergence, whose integral will produce nonvanishing 
boundary terms which spoil the invariance. 

This is seen most clearly in terms of the decomposition 

Oa = Qa + Ka (5) 

where 

and 

00 a + (C'yf'%bOOOf~ (6) 

Ka = (C~')abObO~, (7) 

The action of Qa on a super-Lagrangian ~ now consists of  two parts, Q-a~ 
and Kafs The first of these is made up of derivatives with respect to the 
coordinates x g and 0 a, which are unbounded in the sense that 0~ and 0a 
are tangential to the boundary. Consequently, the integral Qa~ over these 
coordinates vanishes. However, integrating Ka..T, over all the coordinates 
yields a boundary term, since some of the derivatives 0r have components 
normal to the boundary. 

The generators Qa commute with the coordinates x ~ and anticommute 
with the coordinates 0 a. Moreover, they obey the familiar relations 

{Qn, Qb} = 2(C~/g)nb0g, [Qn, 0~1 = 0 (8) 

For these reasons, it is natural to think of the Qa as generators of a "reduced" 
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supersymmetry which acts in a superspace with coordinates (c a, 0~). (Of 
course, whether this is a genuine supersymmetry depends on whether the 
algebra can be enlarged to include the generators of rotations. However, this 
question does not concern us here.) The remaining coordinates (x ~, 0 a) are 
just passive spectators of this reduced supersymmetry. 

Because the generators Qn obey the same anticommutation relations 
as the Qn, the reduced supersymmetry can be thought of as an alternative 
representation of the boundary-preserving subalgebra. Since unwanted bound- 
ary terms arise from the variation of any super-Lagrangian transforming in 
the original representation (4), we might seek instead a modified super- 
Lagrangian ~ '  which transforms in the new representation (8). The integral 
of Qn~' over the coordinates x ~ and O n would then be guaranteed to vanish, 
unlike the integral of Q~,~. If we also demand that ~ '  and ~ should differ 
by a total divergence, then the dynamics of the model will be unaffected. 

Under an infinitesimal boundary-preserving transformation ~ ,-, ~ ,  = 
(1 + cnQn)~ the modified super-Lagrangian must transform as 

Y '  ,-. Y "  = (1 + e '~On)Y ' (9) 

It is not difficult to show that the only satisfactory choice is 

~ '  - exp(0aKa) ~ (10) 

The exponential is defined by a power series which terminates after a finite 
number of terms, owing to the properties of Grassmann variables. Using the 
anticommutation rules for Qn, Ka, and 0 t;, it is a simple exercise to show that 

exp(OaK~) eaQa = ~nO,~ exp(O~Ka) ( l l )  

The desired result (9) then follows immediately. 
In fact 0aK~ is a linear combination of the derivatives O~ (with nilpotent 

commuting Grassmann coefficients) and so the necessary modification of 
can be thought of as a kind of translation. 

If we write the components of ~ as 

L = fd~ L a = f d~ 0a~, 
f 

Lab = I d~ OaOb~ 
,1 

(12) 

then the correction to the L component, which represents the ordinary Lagran- 
gian of the theory, is found to be 
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f 
8L - J d~ (~'  - ~g) 

1 - 1 
= 1~ (Cv~)~O~L~b + ~. ( C ~ ) ~ ( C ' ~ ) ~ O ~ O s  + . . . .  (13) 

The total action can now be written 

S - L d~x d~ ~ '  = I d~x (L + ~L ) (14) 

By construction, this expression is completely invariant under the boundary- 
preserving subalgebra [as represented by (4) on ordinary superfields such as 
~ ,  or by (8) on ~ ' ] .  Moreover, since ~L is a total divergence, it can be 
integrated to give a boundary correction. Consequently, its presence does not 
affect the dynamics of the model. 

At this stage it is worth noting that (13) is the only admissible correction 
to the Lagrangian which restores the invariance of the action under the 
boundary-preserving subalgebra. Suppose that we had disregarded the "non- 
physical" components of ~ from the start and concerned ourselves solely 
with finding corrections to the "physical" L component. In principle ~L 
could have been derived term by term, with each term chosen to cancel the 
inadequacies of the last. However, it is not difficult to see that the same 
result would have been obtained in the end, although in a less transparent form. 

In general, it is a straightforward exercise to verify that (13) and (14) 
do yield invariant actions for examples of interest. The special case n = 1, 
D = 2, which corresponds to simple supersymmetric quantum mechanics 
(Cooper and Freedman, 1983), has been considered (Luckock, 1991). (In this 
case there are only two subalgebras of the supersymmetry algebra which 
preserve the boundary.) Similarly, the case n = 1, D = 4 has been considered 
by Boll6 et al. (1990), who obtained results of the same kind by an exhaustive 
analysis of the possible forms of the Lagrangian. Expression (13) also repro- 
duces known results in the cases n = 2, D = 2 and n = 3, D = 2, which 
are relevant to models of  supersymmetric strings and membranes (Luckock, 
1989; Luckock and Moss, 1989). 

3. INVARIANT BOUNDARY CONDITIONS 

Given a super-Lagrangian ~(xg, 0 a) which is functionally dependent on 
some superfie/d 

~ ( X  ~, 0 a) : ~(X)  "~- Oal]la(X) "~ loaobXab(X) "4- " '"  ([5) 

we can use the results of the previous section to write down an action S[~] 
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which is invariant under the boundary-preserving subalgebra. In this context, 
it is natural to ask whether it is possible to impose boundary conditions on 

which are invariant under this subalgebra. 
We begin by looking for boundary conditions which transform in a well- 

defined manner under the action of the generators Q~. The problem is that the 
transformations of most components of �9 are determined by the derivatives of 
other components. The components which depend on the coordinates 0 ~ are 
a particular nuisance, since their variations depend on derivatives normal to 
the boundary; for example, if ~ is a constant anticommuting spinor parametriz- 
ing an infinitesimal boundary-preserving supersymmetry transformation, then 

(16) 

In order to know how a boundary condition on Oa should transform, one 
must therefore impose various boundary conditions on ~b, including one on 
its derivative normal to the boundary. The problem becomes worse if we 
wish to impose boundary conditions on components which depend on more 
than one 0 a. 

To avoid such difficulties, let us project out a "reduced superfield" ~(x ~, 
0 ~) by eliminating all components of �9 which depend on the coordinates 
0a; thus 

~(x ~, 0 ~) = d~(x) + 0eOe(x) + �89 + "-- (17) 

One then finds that the components of ~ transform into each other under 
the action of the generators Qe. Any boundary conditions imposed on these 
components will therefore transform in a well-defined manner under the 
action of the boundary-preserving subalgebra. 

In fact, the generators Qe act on the reduced superfield ~ to give the 
same transformation laws for its components as do the generators Qa. It 
follows that the boundary-preserving subalgebra (4) can be represented by 
the action of the reduced supersymmetry algebra (8) on ~. 

A set of boundary conditions on the components of the reduced superfield 
is not usually invariant under the boundary-preserving subalgebra. How- 

ever, the orbit of such a set, under the action of the corresponding group, 
obviously is. We can therefore recover invariance by merely requiring that 
the reduced superfield ~ should obey any of the boundary conditions in such 
an orbit. In other words, we impose boundary conditions which need only 
be obeyed up to a possible reduced supersymmetry transformation. In fact, 
boundary conditions of exactly this sort have been used in the context of 
supersymmetric strings and membranes (Luckock, 1989; Luckock and 
Moss, 1989). 
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4. CONCLUSION 

If an n-dimensional model has a supersymmetry which admits a bound- 
ary-preserving subalgebra with ~ bosonic generators, then we can use the 
methods described in Section 2 to obtain a type of reduced supersymmetry 
in ~ dimensions. In particular, we can add to the action a boundary correction 
which restores part of the supersymmetry broken by the boundary. 

In quantum mechanical applications, the boundary often consists of two 
pieces which represent initial and final hypersurfaces. In this context, transi- 
tion amplitudes are defined by summing over all field configurations obeying 
specified boundary conditions, which correspond to the initial and final states. 
Using the results of Sections 2 and 3, we can obtain an action functional 
and boundary conditions which are invariant under the boundary-preserving 
subalgebra. When these are employed, the resulting amplitudes will be invari- 
ant under the reduced supersymmetry generated by this subalgebra. 

One problem that has not yet been addressed is that of identifying the 
boundary-preserving subalgebra. On a case-by-case basis, if one exists, then 
it can usually be found quite easily. In fact, when the boundary is fiat, the 
subalgebra can often be enlarged to include the generators of boundary- 
preserving rotations. The reduced supersymmetry obtained from this subalge- 
bra is then a bona fide supersymmetry in t~ dimensions. 
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